

Wide-band Spectral Control of Au Nanoparticle Plasmon Resonances on a Thermally and Chemically Robust Sensing Platform

<u>Chatdanai Lumdee</u>, Binfeng Yun, and Pieter G. Kik

CREOL, the College of Optics and Photonics, UCF, Orlando, FL, USA

Introduction

- Localized Surface Plasmon Resonance (LSPR)
 - Provide a strong field enhancement
 - Application:

SERS, non-linear enhancement, solar cell, etc.

Introduction

- Localized Surface Plasmon Resonance (LSPR)
 - Provide a strong field enhancement
 - Application:

SERS, non-linear enhancement, solar cell, etc.

Substrate based Resonance Tuning

Controlling particle-substrate interaction

Using Organic layers –

e.g. polyelectrolyte (PE) layers, amine-terminated alkanethiol

Substrate based Resonance Tuning

Controlling particle-substrate interaction

Single particle resonance tuning using metal oxide film

Challenges: small resonance tuning range

Gold nanoparticle on Al₂O₃ coated gold film

- Challenges:
 - background signal, thermal/chemically stability
 - small resonance tuning range
- Proposed system:
 - Gold nanosphere and $Al_2O_3 \rightarrow$ stable, no background
 - Spacer layer < native Al₂O₃

- Gold nanoparticle (60 nm diameter) on Al₂O₃ coated gold film
 - Frequency domain finite integration technique (CST microwave studio[®])
 - Dipole moment summation
 - Assume electric dipole radiation

$$\vec{\mu}_{NP} = \epsilon_0 \int_V \chi \vec{E}(\vec{r}) d\vec{r}$$
$$I_{scat} \alpha |\vec{\mu}_{NP}|^2 \omega^4$$

λ=690 nm

- Gold nanoparticle (60 nm diameter) on Al₂O₃ coated gold film
 - AuNP on gold films without and 4 nm Al₂O₃ coating
 - Multi-resonance modes
 - Tuning range ~ 100 nm

- Gold nanoparticle (60 nm diameter) on Al₂O₃ coated gold film
 - AuNP on gold films without and 4 nm Al₂O₃ coating
 - Multi-resonance modes
 - Tuning range ~ 100 nm

- Gold nanoparticle (60 nm diameter) on Al₂O₃ coated gold film
 - AuNP on gold films without and 4 nm Al₂O₃ coating
 - Multi-resonance modes
 - Tuning range ~ 100 nm

NanoPhotonics and Near-field Optics Group - http://kik.creol.ucf.edu/

Experimental Process

Simulation

Resonance tuning range ~100 nm, two resonance modes

Sample

- A thin Al layer on top of a Au film (base pressure < 10⁻⁵ mbar)
- The Al film gets oxidized entirely \rightarrow Al₂O₃ coating layer
- Au nanoparticles deposition

Measurements

- Ellipsometry \rightarrow Al₂O₃ thicknesses,
- Darkfield microscopy images,
- Single particle scattering spectra

Dark-field Microscopy Images

Dark-field microscopy

Canon EOS 450D digital cameraWell separated scatterers

Dark-field Microscopy Images

Dark-field microscopy

- Canon EOS 450D digital camera
 - Green central and Red ring scattering

Not what we expected!!!

Dark-field Microscopy Images

- Dark-field microscopy
 - Canon EOS 450D digital camera
 - Green central and Red ring scattering
 - HSi-440C Hyperspectral Imaging System (Gooch & Housego)

Single Particle Scattering Spectra

Measured single particle scattering spectra

- Resonance tuning range ~ 90 nm
- Two resonance modes (at least)

Vertical (z) Lateral (x and y) dipole oscillation dipole oscillation 0 nm 1.3 nm -0.5 0.0 1.5 nm 1.0 2.2 nm Scattering signal (a.u.) 3.4 nm 0.5 0.0 -0.5 0.5 1.0 0.0 550 600 650 700 800 500 750 Wavelength (nm)

Single Particle Scattering Spectra

- Simulation and measurement (~100 nanoparticles)
 - Scattering peak wavelength ~100 nm resonance shifting
 - Scattering peak strength quite stable, slowly gets weaker after Al₂O₃ > 2 nm

Laser Heating and Stability

- Particle probing and alignment
 - Align the NP to the center of the beam by near-field probing
 - Laser irradiation: TM polarization, 15° angle of incidence

Laser Heating and Stability

Summary

Al₂O₃ coated gold film

→ Tuning range ~100 nm (3 times improvement)

Summary

Al₂O₃ coated gold film

Challenges solved!

→ Tuning range ~100 nm (3 times improvement) Just accepted – Journal of Physical Chemistry C DOI: 10.1021/jp4056522

- \rightarrow Irradiation tolerance > polymer based substrate tuning
- \rightarrow No organic background --- good for sensing application

Thank you!

