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Introduction

= Localized Surface Plasmon Resonance (LSPR)
= Provide a strong field enhancement
= Application:
SERS, non-linear enhancement, solar cell, etc.

Metal nanosphere
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Introduction

= Localized Surface Plasmon Resonance (LSPR)
Provide a strong field enhancement

Application:

SERS, non-linear enhancement, solar cell, etc.

= Plasmon Resonance Tuning
Resonance wavelength is crucial
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Substrate based Resonance Tuning

= Controlling particle-substrate interaction
Two single particle resonance tuning examples:
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J. J. Mock, et al. Nano Lett. 2008, 8, 2245-2252 M. Hu, et al. J. Phys. Chem. C 2010, 114, 7509-7514

= Challenges: fixed resonance, thermal stability?, layer adhesive?
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old nanoparticle on Aluminum film

= Challenges: fixed resonance, thermal stability?, layer adhesive?
= Goals: tunable resonance, thermally stable, good adhesion

" Proposed system:
= Gold nanoparticles on an aluminum film
= Au provides resonance in visible with high stability
= Al high plasma frequency, voltage controlled growth of a stable Al,O,
spacer layer
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Voltage controlled resonance tuning !

NanoPhotonics and Near-field Optics Group, http://kik.creol.ucf.edu 5



http://kik.creol.ucf.edu/

&uUcCF
Experimental Process
= Sample

= 100 nm Al film on silicon wafer (with native Al,O; layer)
= 60 nm diameter Au nanoparticles were deposited on the substrate

" Ellipsometry, microscopy, and spectroscopy
= Measure Al,O; thicknesses éﬁ]
= Scattering images, l

= Scattering spectra,

= Anodization
= Voltage controlled Al,O, thickness
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Measurement results

= Ellipsometry
Linearly voltage controlled Al,O, thickness = voltage controlled interaction
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Measurement results

= Ellipsometry
Linearly voltage controlled Al,O, thickness = voltage controlled interaction

= Dark-field microscopy
Well separated, ring-shaped images
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Measurement results

= Ellipsometry
= Linearly voltage controlled Al,O, thickness = voltage controlled interaction

= Dark-field microscopy
= Well separated, ring-shaped images

= Single particle spectroscopy - T o -
= Red-shift compared to a free-space resonance 2 \:/ £0
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Measurement results

= Same set of the gold nanoparticles
Resonances blue-shift, reduce scattering
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Simulation

= Simulation was conducted based on the experimental structure

replacing Si with SiO,

= Incident angle in the simulations was set at 53° to the surface normal

» Three-dimensional frequency domain electromagnetic simulation
Unit cell boundaries with 200 nm lattice spacing
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Simulation

= Ring-shape scattering pattern observed in a dark field microscopy image
suggests a vertical electric dipole oscillation
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Simulation

= Ring-shape scattering pattern observed in a dark field microscopy image
suggests a vertical electric dipole oscillation

= Scattering spectra were calculated using a dipole radiation model
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Tuning Results

UCF

= Calculated scattering spectra show the same tuning trend as observed in
the experiment

=" The resonances show blue-shift and decreasing in scattering intensity as
Al,O, thickness increases
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Tuning Results

" Observed: ~30 nm resonance blue-shift upon increasing Al,O; thickness
=" 50 % change in brightness observed

= Small particle to particle variation, possibly due to size, faceting, local

residues
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Conclusion

= Resonance tuning: single gold nanoparticles on anodized Al film

= Expect: high chemical and thermal stability system
= \/oltage controlled resonance tuning

= Single particle tracking = post-deposition tuning
= Selective electric dipole oscillation

= Blue-shift and reduced scattering spectra

» Confirm with numerical calculations
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